Water Quality Testing and Water Use Assessments in Capiz Province, Philippines

Capiz Assessment and Water Solutions

Final Presentation

Study Area: Capiz Province

- → Population: 700,000
- → Roxas City: 132,000 people
- **Provincial Health Office** → 16 municipalities → Main economies Ivisan Sapian Fishing Pilar Panitar Mambusao Sigma Farming resident Roxa Jamindan Dao Ma-ayon Cuartero Dumalaq Tapaz Dumarao

Final Presentation

Patty Chuang, John Millspaugh, Molly Patrick, Stephanie Trottier | 04/23/2010 | CAWS

2

Capiz Provincial Health Office

Provincial Health Officer: Dr. Jarvis Punsalan
Sanitary Engineer: Jane Delos Reyes

Final Presentation

Patty Chuang, John Millspaugh, Molly Patrick, Stephanie Trottier | 04/23/2010 | CAWS

3

Capiz Water Sources

UN Designation	Unimproved	Improved		
Philippines Designation	Doubtful	Level 1	Level 2	Level 3

4

Project Scope

- Selective testing of water sources in 16 municipalities of Capiz Province for EC-Kit verification and water quality mapping
- Selective testing of water sources to determine the accuracy of the H₂S and Easygel tests and to determine their potential as complementary EC-Kit tests
- Village site visits in each municipality for source and community water use assessments
- Modeling for Panay River water resources planning and management

5

Comparison of EC-Kit with Quanti-Tray®: Testing, Verification, and Drinking Water Quality Mapping

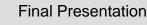
Patty Chuang

Final Presentation

6

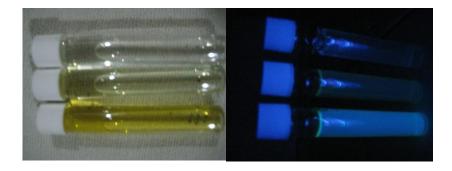
Research Objectives

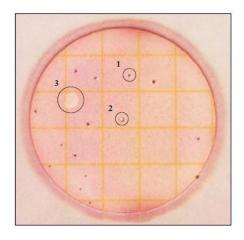
- To determine the risk level data for drinking water sources according to *Escherichia coli* and total coliform levels in the province under different conditions.
- To verify the EC-Kit under different water source conditions.
- → To create a map of the water quality results from EC-Kit and Quanti-Tray[®].



Final Presentation

Background: The EC-Kit and Quanti-Tray ®


→ The EC-Kit


- Simple and inexpensive kit
- Two complementary tests for *E. coli*
 - Colilert 10 mL Presence/Absence test
 - 3M's Petrifilm[™] Enumerative test
- → IDEXX Quanti-Tray® and Quanti-Tray®/2000
 - Enzyme substrate coliform tests
 - Use semi-automated quantification methods based on the Standard Methods Most Probable Number (MPN) model
- Provides bacterial counts of up to 200.5 MPN /100 mL of sample (or 2419 MPN /100 mL for Quanti-Tray/2000)

Sample Analysis

→ EC-Kit Test Results

→ Quanti-Tray Test Results

9

Sample Analysis

E.coli counts from Colilert and Petrifilm enable the determination of different levels of risk

EC-Kit Resu	lts	Risk Le	evel Categories
Colilert <i>E. coli</i> Result (Metcalf, 2006)	Petrifilm <i>E. coli</i> Result (Metcalf, 2006)	Risk Level (WHO, 1997)	<i>E.coli</i> in sample (coliform forming unit per 100 mL) (WHO, 1997)
Absent (clear = below detection)	0	Conformity	< 1
Absent (clear = below detection)	0	Low	1-10
Present (yellow, blue fluorescence)	0	Intermediate	10-100
Present (yellow, blue fluorescence)	1-10 (blue with gas bubbles count)	High	100-1000
Present (yellow, blue fluorescence)	> 10 (blue with gas bubbles count)	Very High	> 1000

(Adapted from WHO, 1997, replacing "thermotolerant bacteria" with "E. coli") (Metcalf, 2006)

Final Presentation

10

Water Quality Test Results

→ 561 water samples

Final Presentation

- 521 water samples collected in Capiz Province
- 40 water samples collected from the Charles River
- Each sample was tested in the field using the two component tests of the EC-Kit and Quanti-Tray®
- For all statistical analyses, STATA: Data Analysis and Statistical Software (Version 11.0) was used

Chi-square test for Capiz Water Samples

	Quanti-Tray® Most Probable		able Number	
	Risk Level	Conformity/Low/Intermediate	High/Very High	Total
Petrifilm TM	Low/Conformity/Intermediate	353	19	372
retriinin	High/Very High	43	106	149
	Total	396	125	521

χ² =254.3837 **Pr = 0.000**

		Quanti	Quanti-Tray®		
		Presence	Absence	Total	
Colilert	Presence	242	32	274	
Comert	Absence	101	146	247	
	Total	343	178	521	

		Quanti-Tray	Quanti-Tray® Most Probable Number			
	Risk Level	Conformity/Low	Intermediate	High/Very High	Total	
	Low/Conformity	230	13	4	247	
EC-Kit	Intermediate	76	34	15	125	
	High/Very High	13	30	106	149	
	Total	319	77	125	521	

χ² =129.923 **Pr** = **0.000**

χ² =336.2617 Pr = 0.000

Final Presentation

2x2 Frequency Distribution Table for Capiz

	Quanti-Tray® Most Probable Number		able Number	
	Risk Level	Conformity/Low/Intermediate	High/Very High	Total
Petrifilm TM	Low/Conformity/Intermediate	68%	4%	71%
retrimm	High/Very High	8%	20%	29%
	Total	76%	24%	100%

True Results = 88%

		Quanti	Quanti-Tray®	
		Presence	Absence	Total
Colilert	Presence	46%	6%	53%
Contert	Absence	19%	28%	47%
	Total	66%	34%	100%

True Results = 74%

		Quanti-Tra	Quanti-Tray® Most Probable Number		
	Risk Level	Conformity/Low	Intermediate	High/Very High	Total
	Low/Conformity	44%	2%	1%	47%
EC-Kit	Intermediate	15%	7%	3%	24%
	High/Very High	2%	6%	20%	29%
	Total	61%	15%	24%	100%

True Results = 71%

Mir

Final Presentation

Calculating Proportional Reduction in Error (λ)

- → A measure of "how good one becomes at making predictions"
- > Initial prediction is based on current UN water source level designation:
 - Unimproved sources: High/Very High Risk Level (Presence)
 - Improved sources: Conformity/Low Risk Level (Absence)

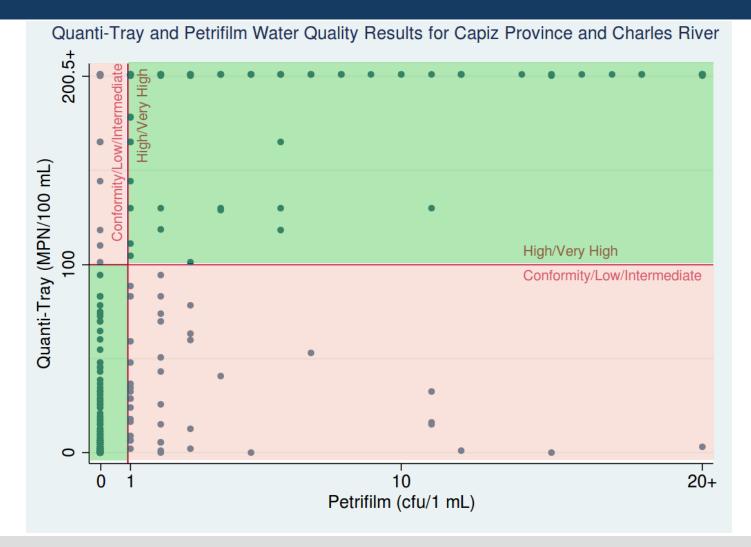
 $\lambda = \frac{(\textit{Error } w/o \textit{ conditional info}) - (\textit{Error } w/\textit{conditional info})}{\textit{Error } w/o \textit{ conditional info}}$

Standard Method

New Test	Presence	Absence
Presence		
Absence		

 BUT not only interested in specific categories, also in ensuring the new, field-based tests err on the side of caution...

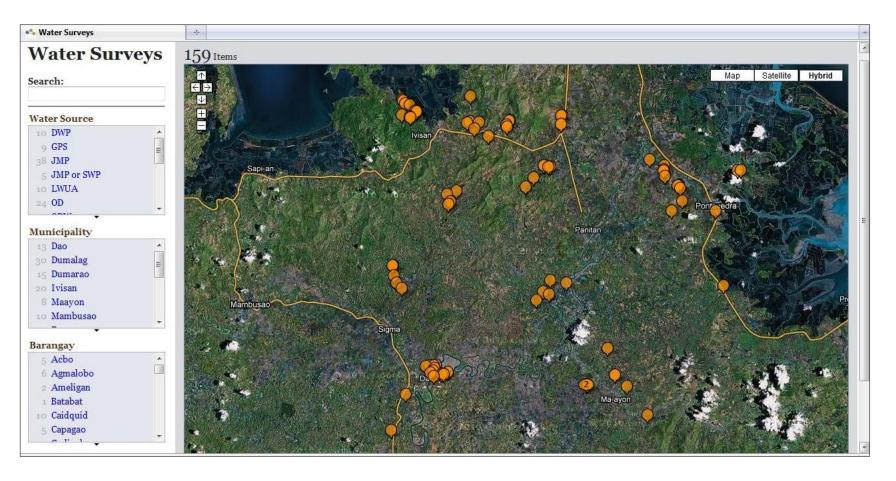
		Standard Method Test		
		Conformity/Low	Intermediate	High/Very High
New	Conformity/Low			
Test	Intermediate			
1051	High/Very High			


Final Presentation

14

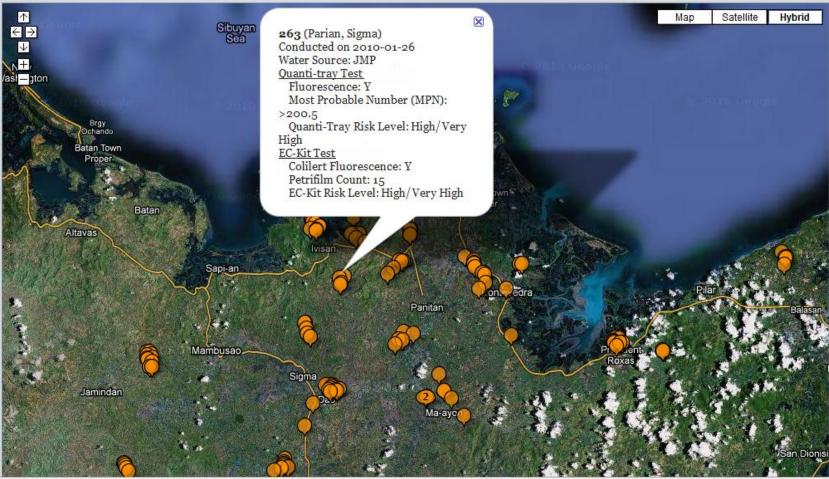
Proportional Reduction in Error

Tests	Error	Proportional Reduction in Error (λ)
Unimproved + Quanti-Tray	15%	
Unimproved + Colilert	12%	25%
Unimproved + Petrifilm	37%	-138%
Unimproved + EC-Kit	6%	63%
Improved + Quanti-Tray	64%	
Improved + Colilert	27%	58%
Improved + Petrifilm	39%	39%
Improved + EC-Kit	6%	60%



17 Final Presentation

Water Quality Mapping


Final Presentation

19

Mir

Water Quality Mapping

160 Items

Final Presentation

20

Conclusion

Conclusion

- Each component of EC-Kit and the entire kit is correlated to Quanti-Tray® in a statistically significant way (chi-square test)
- We can make better predictions with the use of just Colilert, but not Petrifilm (due to detection limit)
- A combination of both tests in the form of the EC-Kit allows for best predictions
- Proportional reduction in error in using the EC-Kit is 62.5% for unimproved water sources and 59.8% for improved water sources

21

Recommendations for Future Studies

→ EC-Kit

- Modification of EC-Kit Instructions
- Training and follow-up

Future Studies

 Better detection: Use of Quanti-Tray® 2000 to provide bacterial counts of up to 2419 MPN / 100 mL

Water Quality Mapping

 Allow inputs for various tests, have different risk level colors per location

Final Presentation

22

New potential tests for EC-Kit: Hydrogen Sulfide (H₂S) Test Easygel Test

Water Quality Assessment

Stephanie Trottier

Research Objectives

- Validate the accuracy of the H₂S test, Easygel, and EC-Kit tests (Colilert and Petrifilm) against a Standard Methods test
 - Field tests in Capiz Province (vs. Quanti-Tray)
 - Laboratory tests at MIT, Cambridge (vs. Quanti-Tray and membrane filtration)
- Compare accuracy of H₂S test using different testing parameters
 - Sample volume (10, 20 and 100 mL)
 - Test reagent (Laboratory-made and HACH Pathoscreen)
- Provide Recommendations
 - Combination of tests that yield the most accurate results
 - Price and practicality/ease of use

24

H₂S and Easygel tests

- → H₂S test
 - Presence/Absence test
 - Detects presence or absence of H₂S-producing bacteria
 - n = 203 samples

- Easygel test
 - Enumerative test
 - E.coli and total coliform

colony counts

n = 83 samples

Micrology Laboratories, 2009

Final Presentation

25

Colilert and Petrifilm

→ Colilert

- Presence/Absence test
- Detects presence or absence of *E.coli* and total coliform
- n = 218 samples

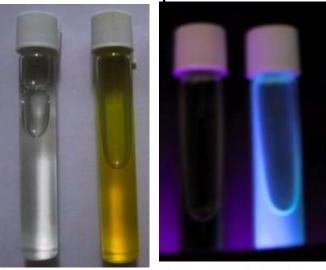


Photo credit: Robert Metcalf

Petrifilm test

- Enumerative test
- E.coli and total coliform
 - colony counts
- n = 218 samples

Work Journal, 2009

Final Presentation

26

Accuracy: Statistical Analyses

→ True results, false positives and false negatives

	Standard Methods Test		
	Presence	Absence	
+ New	Positive result for both testing methods	False Positive	
Test	False Negative	Negative result for both testing methods	

- \rightarrow Error and Proportional Reduction in Error, λ
- Sensitivity, Specificity, Positive and Negative Predictive Values
- Schi-square test and Fisher's exact test
- → Scatter Plots

Final Presentation

27

Accuracy: True Results, False Positives, False Negatives

TEST	n	True Results	False Positives	False Negatives	
10-mL H ₂ S	203	80%	9%	11%	
20-mL H ₂ S	203	84%	10%	6%	
100-mL H ₂ S	202	80%	16%	4%	
20-mL HACH	203	79%	9%	12%	
Easygel	83	81%	1%	17%	
Colilert	218	83%	5%	11%	
Petrifilm	218	67%	3%	30%	

- No clear "best test"
- Need to test the accuracy of test combinations...

28

Accuracy: Proportional Reduction in Error, λ

- A measure of "how good one becomes at making predictions"
- Initial prediction is based on current UN water source level designation
 - Unimproved sources: High/Very High Risk Level (Presence)
 - Improved sources: Conformity/Low Risk Level (Absence)
- BUT not only interested in specific categories, also in ensuring the new, field-based tests err on the side of caution...

		Standard Method Test		
		Conformity/Low	Intermediate	High/Very High
New	Conformity/Low			
Test	Intermediate			
1050	High/Very High			

Final Presentation

29

Accuracy: Proportional Reduction in Error, λ

COMBINATIONS	Unimproved Sources			Improved Sources		
COMBINATIONS	Error	λ	n	Error	λ	n
EC-Kit (Colilert + Petrifilm)	3.6%	51%	28	4.8%	90%	126
Petrifilm + 10-mL H ₂ S test	9.1%	82%	33	3.5%	93%	114
Petrifilm + 20-mL H ₂ S test	12.1%	-33%	33	2.4%	95%	126
Petrifilm + 100-mL H₂S test	6.1%	33%	33	1.6%	97%	125
Petrifilm + 20-mL HACH test	15.2%	-67%	33	1.6%	97%	125
Easygel + Colilert	0.0%	100%	13	0.0%	100%	28
Easygel + 10-mL H ₂ S test	0.0%	100%	4	0.0%	100%	18
Easygel + 20-mL H ₂ S test	0.0%	100%	4	0.0%	100%	19
Easygel + 100-mL H ₂ S test	0.0%	100%	3	0.0%	100%	19
Easygel + 20-mL HACH test	0.0%	100%	3	0.0%	100%	22

Final Presentation

30

Cost

TEST	Cost/test in United States	Cost/test in Philippines
EC-Kit	~\$3.00	~\$3.00
10-mL H ₂ S	\$0.07	\$0.17
20-mL H ₂ S	\$0.14	\$0.33
100-mL H ₂ S	\$0.35	\$0.83
20-mL HACH	\$0.59	n/a
Easygel	\$1.63	n/a

- → Other factors to include:
 - Cost of test vials/bottles
 - Cost of sterile sampling bags
 - Freight and transportation charges

31

- Tests were rated based on the following criteria
 - 1. Ease of training for test users: testers and readers
 - 2. Ease of acquiring/making reagents
 - 3. Ease of transportation, storage, and disposal of samples and tests
 - 4. Ease of processing samples
 - 5. Short incubation times
 - 6. Use of electric incubator
 - 7. Easy-to-read results
- Scores (Very Poor: 1 to Very Good: 5) were assigned for each criterion

32

Practicality/Ease of Use

Criteria	H_2S	test	Fooygol		
Criteria	Lab	HACH	Easygel	EC-Kit	
Ease of training test users	5	5	4	3	
Ease of acquiring/making reagents	2	5	3	2	
Ease of transportation/storage/disposal of samples and tests	3	4	3	3	
Ease of processing samples	5	5	4	3	
Short incubation times	5	3	4	4	
Use of electric incubator	5	5	5	5	
Easy-to-read results	5	5	4	2	
TOTAL	30	32	27	22	

33 Final Presentation

Recommendations and Future Studies

Recommendations, based on data presented:

- P/A test: 20-mL H₂S test
- Quantitative test: Easygel test
- Combination: Easygel + 20-mL H₂S test is the best combination, based on accuracy (TR, FP, FN, and λ), cost, and practicality/ease of use

Future studies

- Perform a larger scale Easygel verification, in conjunction with the 20-mL H₂S test
- For Easygel + 20-mL H₂S test results: refine corresponding WHO Risk Levels
- Look at test result accuracy of combination of 2 P/A tests, and find corresponding WHO Risk Levels

34

Recommendations for at-risk water supplies in Capiz Province

Using Water Source and Community Assessments

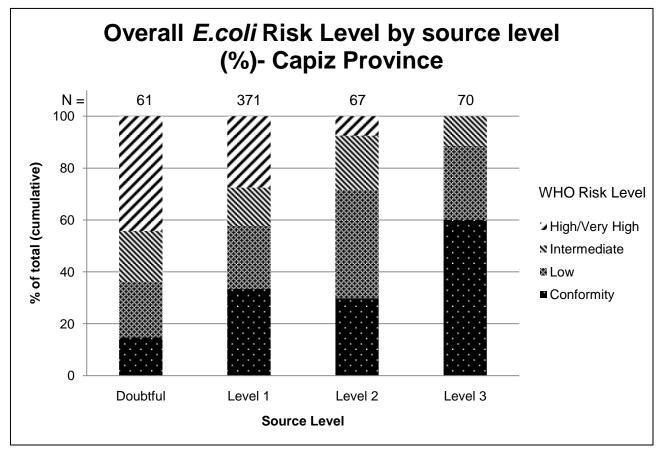
Molly Patrick

- Make technical, managerial and strategic recommendations for improving water quality and management in Capiz
 - Overarching motivation to provide useful, realistic and sustainable recommendations for the PHO and Capizians

- Conduct technical assessments of identified 'at-risk' water supplies
 - Infrastructure
 - Hazard identification
- Use qualitative research methods to assess the nontechnical issues
 - Different needs for water for different purposes
 - Perceived quality needed for different uses

Water Source and Community Assessments

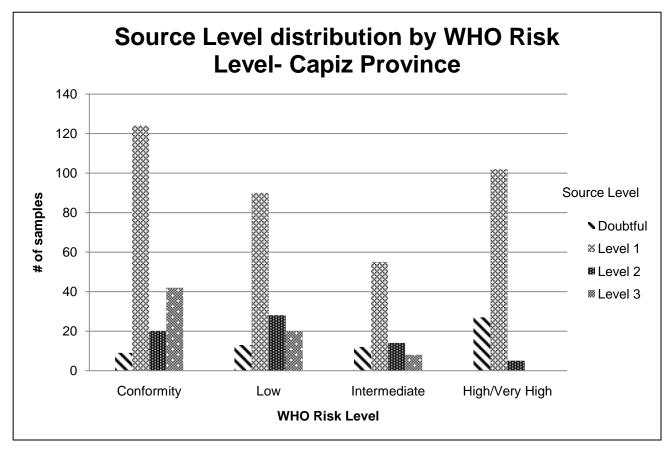
- → 52 WHO Sanitary (Site) Surveys
- 51 Stakeholder Interviews and Group Discussions
- Stakeholders
 - Barangay captain/official/councilor
 - Farmer
 - Household user mainly women



Final Presentation

38

Water Quality Results- Quanti-Tray ®


Shows improving water quality with Source Level

Final Presentation

39

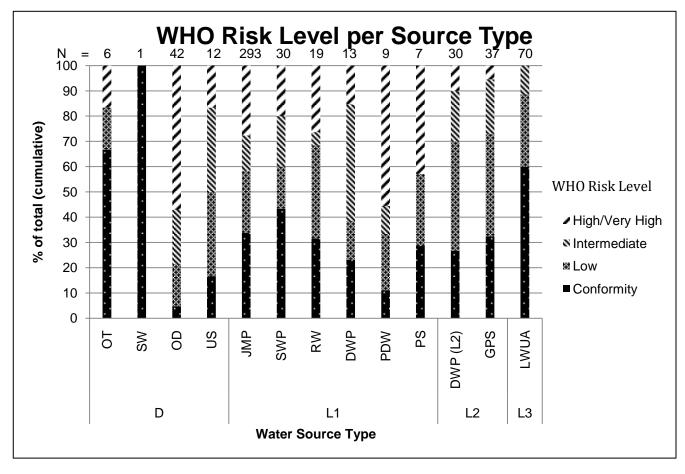
Water Quality Results- Quanti-Tray ®

Level 1 sources show highest variability in water quality

Final Presentation

40

Water Source Types


LEVEL	Water Source Code	Water Source	
D	OD	Open dug well	
	US	Unprotected spring	
	SW	Surface water (Rivers, streams, creeks)	
	ОТ	Others not mentioned above	
L1	SWP	Shallow well with pump (<60 ft)	
	JMP Jetmatic Pump w/ or w/o motor		
	DWP Deep well with pump (>60 ft)		
	PDW Protected dug well		
	PS	Protected spring w/o distribution	
	RW	Rain water catchments (ferro cement tanks)	
L2	GPS	Gravity protected spring w/ pipe distribution, Communal tap stands	
	DWP	Deep well w/ pump w/ pipe distribution, Communal tap stands	
L3	WD	Water Districts	
	LWUA	Local water utilities administration	
	BAWASA	Barangay waterworks system	

Final Presentation

41

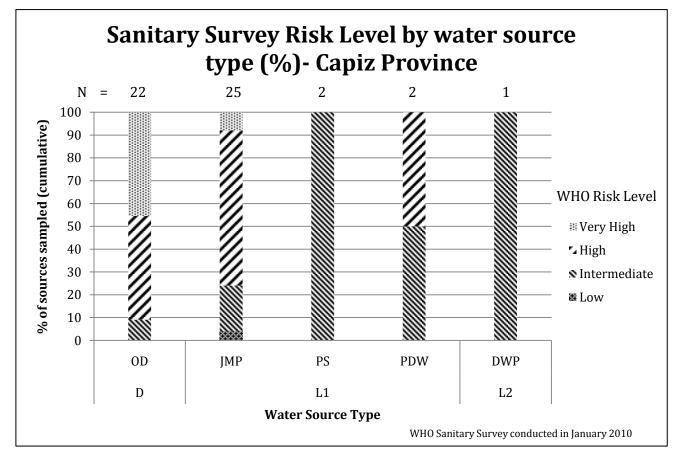
Water Quality Results- Quanti-Tray ®

Level 2 and Level 3 source types showed 70% or more of samples in the low risk to conformity levels

Final Presentation

42

WHO Sanitary Survey Results


II	Specific diagnostic information for assessment	Risk	
1.	Is there a latrine within 10 m of the well?	Y/N	
2.	Is the nearest latrine on higher ground than the well?	Y/N	
3.	Is there any other source of pollution (e.g. animal excreta, rubbish) within 10 m of the well?	Y/N	
4.	Is the drainage poor, causing stagnant water within 2 m of the well?	Y/N	
5.	Is there a faulty drainage channel? Is it broken, permitting ponding?	Y/N	
6.	Is the wall (parapet) around the well inadequate, allowing surface water to enter the well?	Y/N	
7.	Is the concrete floor less than 1 m wide around the well?	Y/N	
8.	Are the walls of the well inadequately sealed at any point for 3 m below ground?	Y/N	
9.	Are there any cracks in the concrete floor around the well which could permit water to enter the well?	Y/N	
10.	Are the rope and bucket left in such a position that they may become contaminated?	Y/N	
11.	Does the installation require fencing?	Y/N	
	Total score of risks	/11	
Contamination risk score: $9-11 =$ very high; $6-8 =$ high; $3-5 =$ intermediate; $0-2 =$ low			

Final Presentation

43

WHO Sanitary Survey Results

77% of sources surveyed High/Very High Risk Level

Major Hazards: Unprotected Wells

- → Broken or cracked platform
- Broken handpump
- Jse of dirty water to prime the pump
- → Improper siting
- Poor drainage

Broken platform

Unsanitary priming

Final Presentation

Major hazards: Inadequate Site Protection

Proximity of septic tanks (or latrines) to wells

Final Presentation

Major hazards: Inadequate Site Protection

Proximity of animals and animal wastes

Final Presentation

Recommendations

- → Step 1
 - Education, coordination
 - Training
- → Step 2
 - Safe Storage containers
 - Household water treatment options
- → Step 3
 - Regulatory framework
 - Management
 - Funding

Final Presentation

48

Step 1- education, coordination

- Required education
 - Basic groundwater flow
 - Structural components of source types
 - Hazardous activities
- Coordination
 - Proposed sessions by municipality
 - Creation of *municipal consortiums*
 - Communication, alliances
 - Pooling of technical and financial resources
 - Enforce regular site inspections

Final Presentation

49

Step 1- training

- Train local citizens as water source technicians
 - To maintain and repair public (D, L1, L2) supplies
 - Precedent
 - 'Circuit Riders' in Honduras
 - handpump technicians in India
 - Per municipality
 - Training by provincial water utilities
 - Volunteers or paid positions
 - Funding considerations

Final Presentation

50

Step 2- HWTS

- Provide and promote the use of 'safe storage' containers
 - Government supplied or sold at-cost
 - Boiling or household chlorination recommended
- Explore household treatment options
 - Contact NGO's, companies providing HWTS technologies in Philippines
 - Aquatabs, PuR, Megafresh, Biosand Filter

Final Presentation

51

Context and constraints

- Decentralization of water management (1980's)
- Level 3: Provincial organizations
 - Local Water Utility Administrations (LWUA) and Water Districts (WD)
 - High fees
- Public Level 1 and Level 2: No formal organization
 - Barangay council
 - General annual budget
 - No fees or small fees
- PHO in charge of public health
 - In charge of testing
 - In charge of Sanitation Inspectors
 - Lack control over budget allocation at the barangay, municipal level

52

Existing Regulations

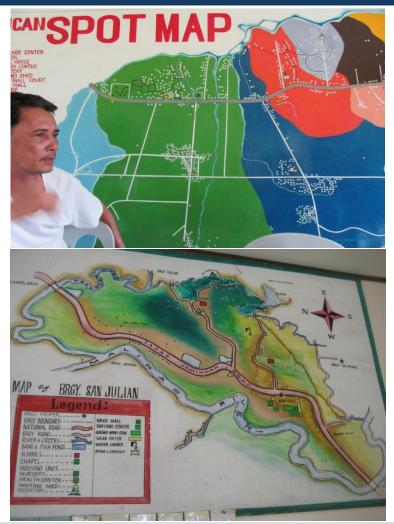
- Implementing Rules and Regulations of the Code on Sanitation of the Philippines- Chapter II Water Supply (1995)
- Philippine National Standards for Drinking Water (2007)
- Capiz needs to develop a strategic plan for aligning their efforts with regulatory requirements
 - Quantify personnel gaps
 - " resource gaps
 - " funding gaps

Final Presentation

53

→ Management

- Decentralization of water management (1980's)
- Government roles
 - LWUA and WD can act as advisors to barangay-level organization on technical and financial management
- Municipal consortium
 - Coordinating technicians
 - Coordinating inspection schedules


54

→ Funding

- Dedicated budgets for water improvements
- Needs assessments
- Funds required for:
 - safe storage
 - technicians
 - repair/maintenance of public L1
 - increased access to L2/L3
 - decreased expense of L3

55

Strong Municipal and Barangay-level Organization

Final Presentation

Screening Model Optimization for Panay River Basin Planning and Management

Water Resources Assessment

John Millspaugh

l'lii

Project Objective

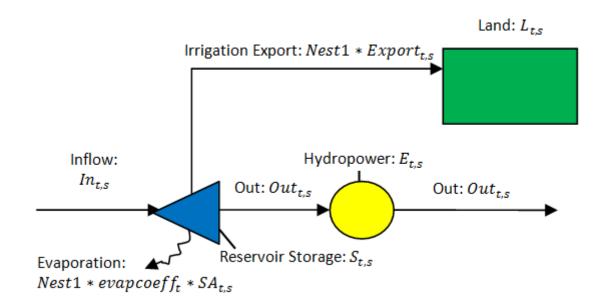
To analyze the decision to implement infrastructure in the Panay River Basin for the purposes of flood protection, hydropower generation, and irrigating rice fields

Source:http://www.deokso.or.kr/data2000/lib/download.php?v_file=0029/200910022206520.htm&v_name=090929__Massive_flooding_in_Philippines-2.htm

Decision Sites

Image adapted from: http://nwin.nwrb.gov.ph/Prog&Proj/JICA/studies/water_resources/studies/0605.htm

59 Final Presentation


→648 Time Steps, t

• 600 Months, *m*

- 48 12-hr flood times, v
 - 8 flood occurrences at end of June, u
 - 50 yr-flood occurring in the 26th year
 - 25 yr-floods occurring in the 13th and 39th years
 - 10 yr-floods occurring in the 3rd, 8th, 18th, 31st, and 43rd years

60

Final Presentation

61

- Capacities of Facilities:
 - Reservoirs (CAPRes), Hydropower (CAPPower), Land (CAPLand)
- → Water Management at Each Site and Time Increment:
 - Storage (S), Release (Out), Export (Export)
- → Energy Produced at Each Site per Time Increment:
 - Energy (E)

62

Screening Model + Simulation Model

 $\rightarrow \text{Maximize (MPesos):}$ $\left[\sum_{t=1}^{648}\sum_{s=1}^{4}B_{t,s}\right] - \left[\sum_{u=1}^{8}\sum_{s=1}^{4}PreventableFloodCost_{u,s}\right] - \left[SummedAmortization * C\right] - \left[O\&M\right]$

- Benefits = f(hydropower, irrigation fields, flood protection)
- Amortized Cost = Facilities built, 6% interest rate assumed
- Operation and Maintenance Cost, 10% yearly of the cost of capital costs

63

Model Equations

Benefits

 $IrrBen_{ts} = Nest1 * \alpha * CAPLand_s * \Delta t$

 $HydroBen_{t,s} = \beta * E_{t,s}$

$$\alpha = 0.004809 \frac{MPesos}{ha * month}$$
$$\beta = 0.0000125 \frac{MPesos}{KW * hr}$$

1.7062

1.0784

Costs $C = \sum_{s=1}^{4} (ResCost_s + HydroCost_s + IrrCost_s)$

0&M = 10% * C * 50 years

Site Site (MPesos/KW) Panay 1 Panay 1 0.0304 Panay 2 0.0324 Panay 2 Badbaran Badbaran 0.0596 0.0546 Mambusao Mambusao δ_{s} Preventable Flood factor (MPesos of damage/summed MCM outflow Site a) for 3 day flood period) Panay 1 0 2.3533 Panay 2 Badbaran 1.9817 2.7846 Mambusao ω_{j} , Flood Factors for equation (MPesos/summed MCM for 3 days) **Flood Region** 0.5663 1 2 0.453 3 1.377

 $ResCost_s = k_s * CAPRes_s$

Final Presentation

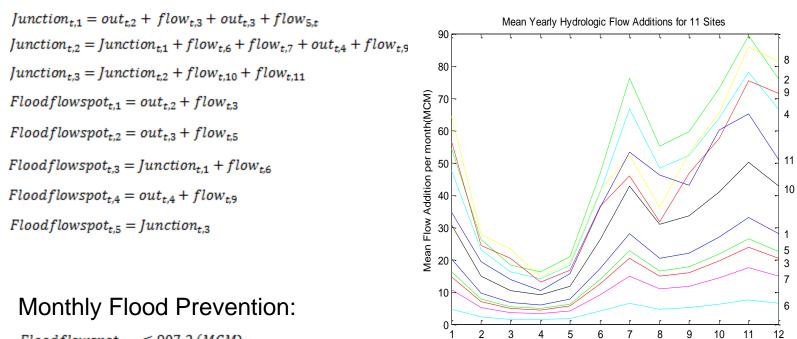
 $HydroCost_s = q_s * CAPPower_s$

$$IrrCost_s = 0.0292(\frac{MPesos}{ha}) * CAPLand_s$$
 (h

 $PreventableFloodCost_{u,s} = \delta_s * Out_{u,s}$

 $FloodCost_{u,j} = \omega_j * Floodflowspot_{u,j}$

Patty Chuang, John Millspaugh, Molly Patrick, Stephanie Trottier | 04/23/2010 | CAWS


4

5

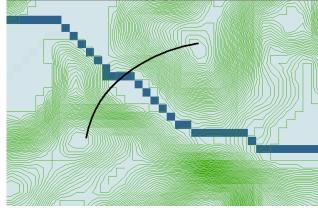
64

Constraints

Continuity

 $S_{t+1,s} = S_{t,s} + In_{t,s} - Nest1 * Export_{t,s} - Out_{t,s} - Nest1 * evapcoeff_t * SA_{t,s}$

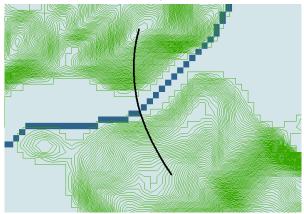
 $Flood flowspot_{m,i} \leq 907.2 (MCM)$

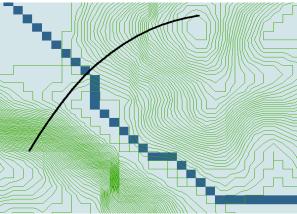

months

Final Presentation


65

Reservoirs





Panay 2

<u>Mambusao</u>

Final Presentation

66

Constraints

Reservoirs

Reservoir size constrained: $CAPRES_s \leq Resmax_s$ Storage constrained to capacity: $S_s \leq CAPRes_s$

Site	Resmax (MCM)		
Panay 1	182.22		
Panay 2	535.47		
Badbaran	734.55		
Mambusao	743.07		

Storage-Head Relationship: $H_{t,1} = -0.0011S_{t,1}^{2} + 0.406S_{t,1} + 4.8876$ $H_{t,2} = -0.00003S_{t,2}^{2} + 0.044S_{t,2} + 1.9019$ $H_{t,3} = -0.00005S_{t,3}^{2} + 0.0714S_{t,3} + 2.9572$ $H_{t,4} = -0.00005S_{t,4}^{2} + 0.0809S_{t,4} + 3.4238$

Storage-Surface Area Relationship:

$$SA_{t,1} = 0.0484S_{t,1} + 1.4077$$
$$SA_{t,2} = 0.0765S_{t,2} + 17.054$$
$$SA_{t,3} = 0.0741S_{t,3} + 7.8962$$
$$SA_{t,4} = 0.0561S_{t,4} + 8.0456$$

Final Presentation

67

Constraints

Energy and Irrigation

Energy Production:

 $E_{t,s} = \gamma_1 * effic_s * Out_{t,s} * H_{t,s} * \Delta t$

 $CAPPower_{s} \leq Hydromax_{s}$ $E_{t,s} \leq CAPPower_{s} * Nest2 * Y$ $Hmin_{t,s} \leq H_{t,s}$ $Hmaxt_{ts} \geq H_{t,s}$

 $Hmax_{t,s} \leq 2 * Hmin_{t,s}$

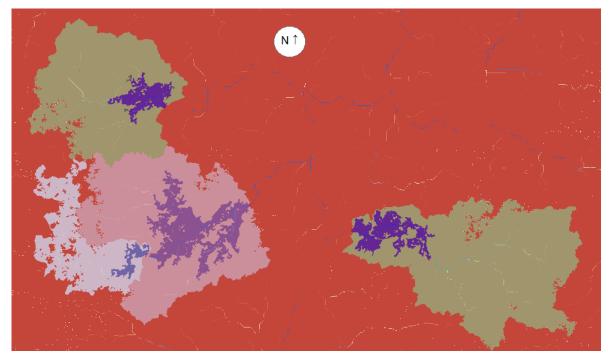
Site	effic	Hydromax (KW)	
Panay 1	0.6814	7000	
Panay 2	0.5983	6000	
Badbaran	0.64	2550	
Mambusao	0.64	2250	

Irrigation Constraints:

 $CAPLand_s \leq Landmax_s$

 $Export_{t,s} = watreq * CAPLand_s * \Delta t * Nest1$

Site	Landmax (ha)		
Panay 1	0		
Panay 2	500		
Badbaran	0		
Mambusao	0		



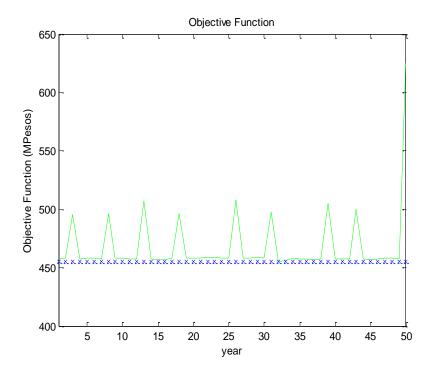
Final Presentation

68

Results

Screening Model Solution

Site	Reservoir (MCM)	Dam height (m)	Hydropower (KW)	Irrigation Land (ha)
Panay 1	88.506	32.20	2393.972	N/A
Panay 2	517.676	16.85	5609.582	500
Badbaran	206.122	15.55	2550	N/A
Mambusao	150.946	14.50	2250	N/A

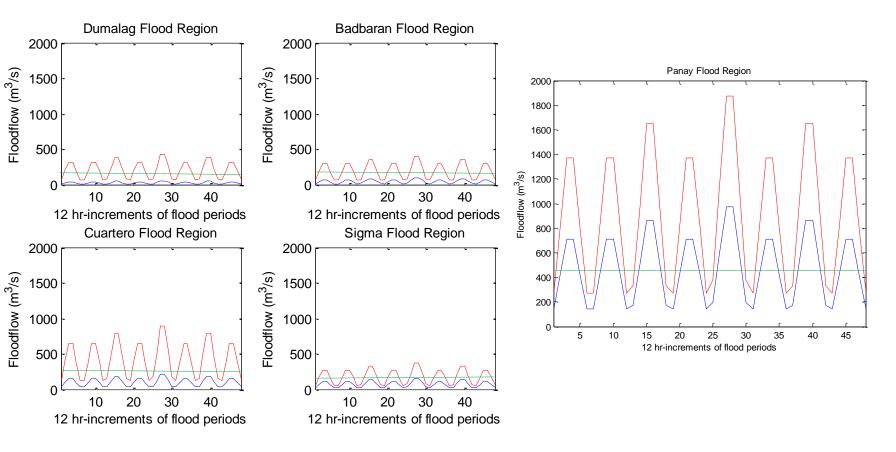

Final Presentation

69

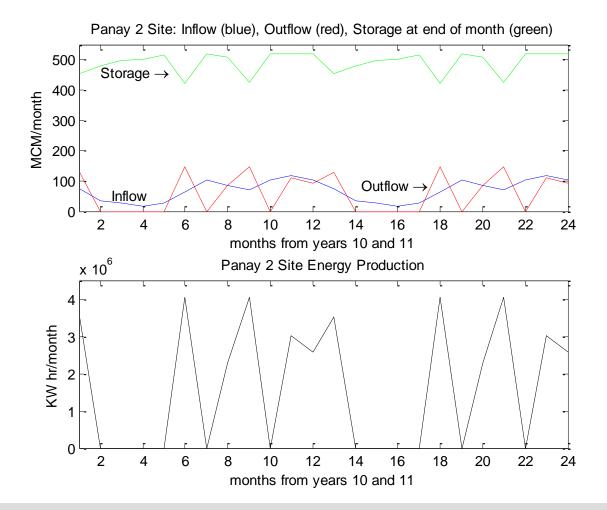
Results

Objective Function

Mean Flow = 23,404 MPesos _____ -1.5% Varying Flow = 23048 MPesos

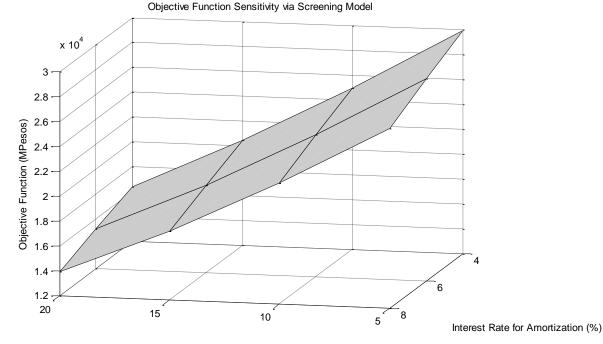

Final Presentation

70


Results

Flood Control

Final Presentation


Panay 2 Monthly Flows and Energy Production

75

→ Sensitivity to O&M and Interest Rate

Yearly O&M as a Percentage of Capital Cost (%)

Plii

Final Presentation

81

Sensitivity of Facility Sizes from Varying Flows

Site	Reservoir (MCM)	Dam Height (m)	Hydropower(KW)	Irrigation Land (ha)
Panay 1	+3.4%	+2.0%	+2.2%	N/A
Panay 2	0%	0%	+1.5%	0%
Badbaran	+8.0%	+5.3%	0%	N/A
Mambusao	-11.1%	-7.7%	0%	N/A

Final Presentation

82

→ High Potential

- Flood Protection 46% overall reduction, 19% in Panay
- Hydropower 91.6% of the total benefits
- Irrigation Potential was always maximized

No Hydropower/Flood Protection Tradeoff

→ Farming

- Organic Institutional arrangement
- Operation and Maintenance Better Attention Needed

83

More Conclusions

→Other Stakeholders

- Displaced People Relocation and Social Cost
- Aquaculture Maintain/Improve River's Health
- New Opportunities Consistent Electricity, Breaking the Typhoon Cycle
- Data Needs

Further Simulations

Final Presentation

84

Questions?

85

l'liī